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ABSTRACT

A shadowing process in the plane is studied, with respect to a single source of light

and a Poisson field of shadowing elements, located between the source of light and a

target curve. N subsegments of length 6 are considered within a specified portion of the

target curve. Random measures of visibility and random shadow weights on the target

curves are approximated by corresponding discrete random variables, defined for the N
subsegments. Algorithms are provided for the computation of the distribution functions

of the approximating discrete random variables.

Key words: Shadowing processes, Semi-Markov processes, discrete approximation, Poisson

fields, measure of visibility.
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1. INTRODUCTION.

Consider a source of light and a linear path in a plane. Random objects are scattered

between the source of light and the path, casting shadows on portions of it.

The Shadowing Model was originally introduced by Chernoff and Dally [1]. In their paper

they assumed that the shadowing objects are disks having centers which are distributed

in a rectangle between the source of light and the path, according to a two dimensional

Poisson Process, and their diameters are represented by i.i.d. random variables. The

paper applies queueing theoretical techniques to derive the conditional distributions of the

lengths of the shadowed and the unshadowed segments of the path.

The shadowed and unshadowed segments of the path are analogous to busy and idle

ptiods in certain queueing processes with Markov arrivals. Like in these processes, the

derivation of the distribution of the lengths of unshadowed segments (which are similar to

idle periods) is straightforward. Chernoff's and Dally's paper concentrates on the distri-

butions of shadowed segments, and provide some integral equations for these distributions.

The solution of these equations requires generally lengthy numerical procedures.

Yadin and Zacks [2, 3] introduced the concept of Random Measures of Visibility, which

are defined as the total length of the unshadowed subsegments of a specified segment of

the path, or the proportion of the segment which is in the light. In these papers the

distributions of Measures of Visibility were approximated by a mixture of a two points

distribution on {0, 1} and a beta distribution on (0,1). These mixed beta distributions

were obtained by equating the first three moments of the distributions of Measures of

Visibility to the first three moments of a mixed-beta distribution. In [2] the path was

assumed to be a segment oi a circle, centered at the origin at which the source of light was

located. The centers of the disks were assumed to be distributed within an annular region

in the circle. The results were extended in [3] and [4], which considered more general paths

and fields of obscuring objects. The methodology was extended to a three dimensional

model in [5]. Certain applications were discussed in [7].
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The main objective of the present paper is to replace the mixed beta distributions by

discrete distributions which approximate the required distributions. More specifically, we

approximate the distribution of a measure of visibility, by the distribution of a discrete

random variable, being the number of the proportion of the unshadowed subsegments,

which are properly located on some segment of the path.

The shadowing model and the approximated measures of visibility and lengths of shad-

owed segments are formally defined in section 2. The approximating distributions can be

given in terms of probabilities of elementary events, which are the events signifying which

of the N subsegments are completely unshadowed among the set of all N subsegments.

These probabilities can be obtained from probabilities of simultaneous visibility, namely

the probabilities that all subsegments in a specified sets are unshadowed. Simultaneous

visibility probabilities were determined for various cases in [4]. Appendix A presents the

methodology needed for the derivations of probabilities of simultaneous visibility.

The accuracy of the discrete approximation to the distributions considered depends on

the number of subsegments. Assuming a set of N subsegments, one has to compute 2 N

probabilities of elementary events from the same number of probabilities of simultaneous

visibility.

Any algorithm which is based on the probabilities of simultaneous visibility is necessarily

-' non polynomial, thus is limited to a relatively small number of points, and may therefore

- yield insufficient accuracy. Fortunately, the distributions of the approximated measures of

visibility can be obtained by a polynomial algorithm which is discussed in section 4.

The results of a numerical example are presented and discussed in section 5. These

results illustrate the advantages and limitations of the algorithms developed in the present

paper with respect to accuracy, computer time and memory requirements.
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2. The Shadowing Model

Let C be a star-shaped rectifiable curve in the plane, with respect to a point 9. C

represents a possible path of a moving target and 0 the location of an observer. We further

assume that C does not pass through 0. A countable number of objects are randomly

dispersed between C and 0. These random objects may obscure the visibility from 0 of

certain portions on C. The model assumes that the obscuring objects are disks centered

according to a two-dimensional Poisson point process of rate A, in a region S, located

between 0 and C and neither 0 nor C are intersected by any such disk. Furthermore,

" it is assumed that the radii of these random disks are i.i.d. random variables, having a

specified c.d.f., F(x), concentrated on O, b].

Let 0 be an interval on the real line, representing the indices s of points P, E C so

that, if sl < S2, 3102 E e, then P,, is on the left of P- 2 . Let R, designate a ray

originating at 0 and passing through P,. We say that P, is visible from 0 if R" is not

intersected by random disks centered in S. For each s E E, let I(s) be a random variable

assuming the value 1 if P, is visible from 0, and the value 0 otherwise. The shadowing

process on C is characterized by the indicator stochastic process

(2.1) 1 = {I(s) : s E E)}.

The Poisson field assumption implies that I is a semi-Markov process in which, {I(r)

-. r > s} and {I(r) : r < a} are conditionally independent, given {I(s) = 1}, for each

.- E e. Let W(s) be a right-continuous non-decreasing function on G. For specified

points .,, .s" CE) such that s' < s" define the random variable

(2.2) V = I(s)dW(s).

V is called a random visibility measure on a segment C, of C bounded by P,, and P,,,.

The interpretation of V depends on the specific definition of the function W. For example,
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if W(s) is the distance, measured along C between P, and P., then V represents the

total length of the portions of C, which are visible from 0.

Another example is given when W(s) is the time required for a target to move along C

from P, to P. In this case V is the total length of time in which the target is visible

from 0, while moving from P , , to P.,,. The weight of the shadow to the right of P, on

C is defined as

(2.3) X(S) - W(S + t(s)) - w(S),

where

(2.4) t(s) =inf {r; > 0, I(s+T) = 1}.

Notice that t(s) and X(s) are random variables. Correspondingly, the shadowing process

on C is the stochastic process
F

(2.5) X = {X(s) :s E E)}.

The Poisson field assumption implies that X is a Markov process, in which {X(r); T < s}

and {X(r); r > s} are conditionally independent, given X(s), for each s E E. Further-

more, all sample paths of X are piece-wise nonincreasing, having countable upwards jump

points at which

(2.6) lim(I(s) - I(s - E)) = -1.

These jump points are the left end limits of shadowed portions of C. In the following

sections we provide discrete type approximations to the distribution of V and to the

conditional distribution of X(s), given that 8 satisfies (2.6).

5
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3. Discrete Approximations of V and X(s).

Consider the segment C with end points P, and Ps,,. Without loss of generality,

assume that W(s) is a c.d.f. concentrated on [s', s"].

For a given positive integer N, let j be the (i/N) th fractile of W, i.e.,

(3.1) j = 1(W- ) ( inf{: s > s' and W(s) _ }, i=0, ... ,N.

Notice that O = s' and sN a". These fractiles define a partition of C to N subsegments.

The measure of visibility V can be written, in terms of this partition as

(3.2) v = I(s)dw(s).
i=1 Ci-I

Let P,, (i = 1,... , N) be the "midpoint" of the ith subsegment, defined by

(3.3) , = w-I(i- 1/2
N ), i-1,...,N.

Let JN,6(si)(i = 1,...,N) be a subsegment of weights 6/N, centered at Pa,, 0 < 6 < 1.

These subsegments are specified by

(3.4) JN,6(S) = {P, s <s <

where

(3.5) si = _( -(1-6/ ), i=1,. N.

Finally, let IN,6 (si) be an indicator random variable, which assumes the value 1 if JN,5 (si)

is completely visible.

The measure of visibility V can be approximated by replacing the function I(s) in (3.2)

with the indicators IN,8(si). Accordingly, the random variable V is approximated by a

discrete random variable VN,6, given by

vN,6 = IN,6(s,)dW(s)

(3.6) /

N Z IN,(S,).

6

• - . .. " " ', , . " . - . - ' ' . - ' ' . ' - . " . . " . " . . " * " , ' :". " .. ? . , . '. . - - -.. " , ... " -, " - " : -



This approximation converges uniformly to V (irrespective of 6), with probability one.

Indeed,

N

I VN,s - V i < sUP{IN,6(si)-
(3.7) i=1

,($)I; ei-1 <- S < Q} -< 2 K(s,,Sit),

where K(s', s") is the number of shadows on C. The Poisson assumption implies that

K(s', s") is finite with probability one, irrespective of N and 6.

Furthermore, for every realization, 'NS(si) is a decreasing function of 6. Hence, VN,6

is a decreasing function of 6, converging to VN,, a.s. as b -+ 1. In addition, VN,j _< V

for each N, a.s.. This means that, for values of b close to 1, the convergence of VN,6 to

V is from below.

The shadow-weights X(s), for ei- < s < j are approximated by XN,a(si), i =

1,..., N; which are discrete random variables defined as the proportion of subsegments

JN,6(sj+j), on the right of JN,6(si), which are shadowed, i.e.

(3.8)
I N -if I(si+m) = 0

for all m = 0,..., NXN,6(s,)

inf{m: 0 < m < N - i for which I(s+,,) = 1}, otherwise.

Using the previous arguments about the nature of the Poisson process, we obtain that

(3.9) lim sup IXN,6 (si) - X(s)I = 0, a.s.,

for each 6, 0 < 6 < 1. Moreover, for each N > 1, and i 1,...,N, <S < ,

(3.10) X(s) <_ XN,1(s,), a.s..

We discuss now the approximations to the distributions of V and X(s), given by the

distributions of the discrete random variables VN,6 and {XN,6(si), i = 1,..., N}.

7
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Let H(v) denote the c.d.f. of V. As shown in [4J and in Appendix A, the c.d.f.

of V, under general conditions on the distributions of the radii of disks, has two jump

points, at v = 0 and at v = 1, and is absolutely continuous on the open interval (0, 1).

Po = P{V = 0), is the probability that C is completely shadowed, and p, = P{V

is the probability that C is completely visible. Thus, generally

0, if v < 0

(3.11) H(v)= po + f h(y)dy, if 0 < v <1

I.1, 1<i,

where h(y) 0 0, Riemann integrable, and

(3.12) h(y)dy = 1 - pi - p.

The c.d.f. of V, H(v), is approximated by the c.d.f. of the discrete r.v. VN,. Let

k
(3.13) hN,6(k) =P{v,6 = k = 0,1,...,N.

The c.d.f. of VN5, HNs(x), is a step function, given by

0, if x < 0

(3.14) HN,5(X), -ohN,6 if < x < kN' (k =0, 1,...,N- 1)

1, if 1 < x.

Notice that hN,a(0) is the discrete approximation to P0 and hN,s(1) is an approximation

to pl. Notice that hN,1(1) = pl, and that HN,,(k) >_ H( ), for each N > 1, k =

0,1,... ,N. Moreover, po <-hN,6(0) for every 0 < b 1.

The distribution of X(s) is concentrated on the interval [0, 1 - W(s)]. Typically, its

c.d.f. has jump points at the two end points of the interval, and is absolutely continuous

in its interior. We are interested in the conditional distribution of X(s), given that P, is

in a shadow, and the weight of the shadow to the left of P, is exactly y, for some y > 0.

4.8
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Let G(z; s, y) denote the tail probability of this conditional distribution. Formally

(3.15) O(x;s,y) = P{X(s) > x I (r) - 0, VtY(s) < r < s},

where

(3.16) ty(s) = sup{t I(t) = 1 and W(s) - W(t) _ y}.

The function G(x; s, y) can also be expressed in terms of the process I as

(x;s, y) = P{I(u) = 0 for all

(3.17) s < < w-l(W(s) + ) II(r)= 0 for all

ty(s)< <r < s}.

For each s in [i-,, ,) (i = 1,...,N) and y = .. ,i - 1) we approximate

c(x; s,y) by

(3.18) ON,S (X; i, V) = I~j i:j> N x-+ 1} .gN,5(j;i, V),

where 9N,6(j; i, V) is the conditional probability function

i+j-1 
t

(3.19) gN,6(j; i, V) =P{ - (1 - Iz)Ii+= 1 j I J( - Iz) = 1}.

In the following sections we provide an algorithm for the computation of the probability

functions hN,6 (k) and gN,6(j; i, V).



4. Recursive Determination Of hN,56(k) and gN,6(j;i, V).

In the present section we develop a recursive algorithm for the determination of the

probability functions under consideration, for specified values of N and 6. For the sake

of simplicity, we replace I'N,6(si) and JN,6 (si) by Ii and Ji, respectively.

We start with definitions of probability functions, which play a role in the algorithm.

(i) For a given i, i = 1,...,N, let - (i) [resp. e+ (i)] denote the probability that the

subsegment Ji is completely unshadowed by disks centered to the left [resp. to the

right] of the ray R,.

(ii) For given indices 1 < i < j < N, let (i,j) designate the probability that J and

ii are completely unshadowed by disks centered between the rays R8, and R8 j.

(iii) For n = 0,...,N-1, m = 1,...,N-n and k = 0,...,m-1, let Q(n,m,k) denote

the probability that Jn, Jn+m, and exactly k out of the m - 1 subsegments in

between, are completely unshadowed by disks centered between the rays R8,, and

Rsn+m.

For n = 0, Q(O,m,k) is the probability that J, as well as exactly k of the m - 1

subsegments to its left, are completely unshadowed by disks centered to the left of R,..

From the above definitions we obtain the following relationships:

(4.1) Q(O, 1,0) =

and

(4.2) Q(n,1, 0) = (n, n + 1), n N 1,.,- 1.

Furthermore, the renewal nature of the processes implies the recursive formulae:

rn-i

(4.3) Q(n,m,k) = Z Q(n,v,k - 1)Q(n + v,m- v, 0),
z,~k

for m=2,...,N- 1, n= 0,...,N - m and k 1,...,m - 1. In addition, since
rn-i

(4.4) y Q(n,m,k) =(n,n + m),
, k=O

" 0
! 10
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we obtain that

(4.5) Q(n,m,o) = (n,n + m) - ] Q(n,m,k).

The functions ±(n) and (n, m) for special cases of two- and three-dimensional shadowing

models, with 6 = 0, were previously presented in [4] and [5]. In Appendix A we present

the general methodology of computing these functions.

The algorithm for computing the probability function hN,6 (k), k = 0,..., N, is given

by the following recursive formulae:

Let P, (k), for n = 1,. .. , N and k = 0, 1,... ,n, denote the probabilities that k out

of the first n subsegments, J 1 ,...,Jn, are completely unshadowed. We compute these

functions recursively, according to the formulae

Q(0,1,0) +(I), k=1

(4.6) P1(k)
1 - P, (1), k = 0

and for n 1,2,..N,

Q Q(0,n, n- 1) +(n), k -n

(4.7) P.(k) = P, 1 (k) + [Q(O,n,k - 1) - Q(O,n,k)] +(n), k 1,...,n - 1

., E=1 PnCk), k --0.

Finally,

(4.8) hN,,6(k) = PN(k), k = 0,1,...,N.

For the purpose of determining the conditional probability function gN,6 (j; i, v) we intro-

duce the function

Q(n,mO), if n + m < N

(4.9) q(n,m)

*'.,=*.* n.t/)J+(..+. ) ifn =N

-+(-) N-,.

.. C-. *~~C ~ * 11
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When n > 1 and n + m < N then the function q(n, m) yields the probability that the

subsegments J,, and Jn+m are completely unshadowed by disks centered between R, and

R.a.+., while all the (m - 1) subsegments {Jn+ 1 ,... , Jn+m} are shadowed. q(0, m) [resp.

q(N + 1 - m, m) Iis the probability that Jn [resp. JN+ 1-rn] is completely unshadowed

by disks centered to the left [resp. to the right] of R,. [resp. RBN+,...m] while all the

subsegments to its left [resp. to its right] are shadowed.

Finally, the conditional probability function of XN,6 is given by

(4.0)gN6(ji,./ = q(i - v - 1,j + v+ l>C+(i +j)C- (i - v-i1)
~'~ q(i -v - 1, 1 + Vi + 1)C+ (i + L)~i-V - 1

for j= 1,...,N-i+1, where e+(N+1) 1 and -0) 1.

12
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5. A Special Case Of Linear Path And Trapezoidal Region.

In the present section we illustrate the discrete approximations for a special geometrical

configuration. We consider a shadowing process in the plane. The source of light is at the

" origin, 0 = (0, 0). The path curve C is a straight line perpendicular to the ray Ro, at

distance R from 0. The line segment C is bounded between points P., and P.,- on C;

where P. is a point on the line C, having polar coordinates (s, R/cos(s)).

The centers of disks are randomly dispersed, according to a two dimensional homoge-

neous Poisson process of intensity A, between two lines, U, W, parallel to C, at distances

u and w, from 0, respectively. We further assume that the radii of disks are independent

random variables having a common uniform distribution on [0, b]. Disks which can cast

shadows on C must have centers within the trapezoid bounded by U, W and the rays Re

and R9,, where

0'= tan-(u tan(s') - b/cos(s')),
(5.1)

0"= tan-(u tan(s") + b/cos(s")).

According to the general methodology for computing visibility probabilities (see Yadin

and Zacks [31, [4]) we introduce the auxiliary functions K+(s,t) and K_(s,t), where

K± (s, t) is the expected number of disks centered between the rays R. and R.±t, which

do not intersect R,. As shown in detail in [7],

(5.2) K_(s,t) = K+(-s,t), for all s' < s < s", t > 0,

and K(g')(s t), <7Is

(5.3) K+(s,t) = K(2)(s,t), b7 S) <t < ( )

r(3')(S't) , 7 )< t,

where

(5.4) n7(x,s) = tan-'(tan(s) + s$
cos(s)

13
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and

W3- U3 sin 2 (t)(5.5) K0+) (s,t) = ' - i't

. 6b cos(s) cos 2 s + t)'

K(2)(a, t) = K(1') b.(,.

w 2  b2  cos(s +t)
(5.6) -[tn(s + t) - tan(s)] + 6 cos(s)I S()

(U 23 oss sin 2()t) U)1T 3  sin2 (t) w uW
)cos(s + t) () + 2g(w) b

b1w8)-)+s [tan(t + s) - tan(s)] 2 - o b(s7 K+)(~) (+)s,(s) 2 2 U COS~s)"

Consider the weight function on [s, sit]

R
(5.8) W(s) = f-(tan(s) - tan(s')),

where L = R(tan(s") - tan(s')). W(s) is the proportional distance along C of P. from

P,, for a' < a _< a". Accordingly, the measure of visibility under consideration is the

proportion of the total length of C which is visible, i.e.,

(5.9) V I(S) cos2 (s)

For a given N and b, 0 < 6 < 1, we approximate V by VN,5, which is obtained by

partitioning the line segment C to N equal-length subintervals. The points P., (n =

i,..., N) are the midpoints of these subintervals. The subsegments Jn (n - 1,..., N) are

centered around P., with end-points P- and P+ of distance 6/2N from P...

The functions C±(n) and e(ii, n), 0 < v < n < N, defined in the previous sections are

given, in terms of the K-functions, by the following formulae:

(5.10) _(n) exp{-A[T(', sn) - K_(s n , s -0')},

14
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(5.11) = exp{-X\[T(sn,0") - K+(s+,0- st)]),
n n

and

(5.12) C(v,n) = exp{-A\[T(s,,,sn) - K+(s +, ) K-C.s-, 2;
2 2

where

=w 2 --

(5.13) T(01,82) 2 (tan(02) - tan(O1)),

* is the area of the trapezoid bounded by U, V, Re, and Re 2 .

-f1

o-

fto

ft,

15
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6. A Numerical Example.

As in the previous section, we consider a linear curve with a trapezoidal region for disk

centers. The radii disks are independent random variables having a uniform distribution

on the interval (0, 0.4). The path C is a horizontal straight line of distance R = 1.0 from

the origin. The horizontal boundaries of the strip S are at distances u = .4 and w = .6,

from 0.

The segment C is the interval between s' = -1 and s" = 1 on C. The intensity of the

Poisson field is A [disk centers/unit squared of area]. In Table 6.1 we present the c.d.f.

of VN,6, for N = 40,50, 6 = 0, 1.0 and A = 10, 20. The c.d.f. HN,6(x) is tabulated for

x = 0(0.1)1. HNa(0) is the discrete approximation to the value of po. 1 - HN,1(1-)

is the discrete approximation to the value of Pl. In addition, we provide in Table 6.1 the

mixed-beta approximation to the c.d.f. H(z). The mixed-beta c.d.f. is the function
. P0, z=O

(6.1) H*(x)= o + (1 - io - pl)I.(a,#), 0 < <1

< x

where I.(a,fl) is the incomplete beta-function ratio. The values of PO, a and '0 are

determined by equating the first three moments of V, which can be numerically determined

(see Yadin and Zacks [3]), to the first three moments of H*(x). As seen in Table 6.1,

Hso,i(x) < H4o,(x), for all 0 < x < 1. Indeed, HN,l(x) converges monotonically to

H(z) from above. Similarly, HIo,o(0) < H 4o,o(0) in all the two cases of A = 10 and 20.

Indeed, HN,o(0) ! Po for all N, and HN,O(0) -- Po as N -- oo. In Table 6.1 we see that,

for each ' the values of the mixed-beta c.d.fo H* (x) satisfy

Hso,o(z) < H'(x) < H~o,,(x), x = .2(.1).8.

This indicates that the mixed-beta approximation H*(z) is apparently close to the true

c.d.f. H(z), over a wide range of z. In Table 6.2 we compare the moments of HN,O(X),

16



HN,1 (x) and H* (x). We see that the moments of HN,o(x) are very close to those of H* (x).

Recalling that the first three moments of H* (x) are, by definition, the corresponding

moments of V, we conclude that the moments of HN,O (x) are close to the true ones.
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Table 6.1 Values of HN,5(x) and H*(z) for

R=I., u=.4, w-.6, s'- 1, s" =1, A=10,20, b=.4.

___6=0 6=1____
*x N = 40 N = 50 N = 40 N = 50 H*(x)

0.0 0.00081 0.00072 0.00225 0.00167 0.0000
10 0.1 0.00461 0.00501 0.01032 0.00962 0.0021

0.2 0.02325 0.02461 0.04286 0.04036 0.0305
0.3 0.07009 0.07315 0.11159 0.10657 0.0942
0.4 0.15805 0.16336 0.22352 0.21624 0.1967
0.5 0.29110 0.29864 0.37336 0.36519 0.3339
0.6 0.45836 0.46724 0.54266 0.53547 0.4954
0.7 0.63657 0.64548 0.70731 0.70265 0.6645
0.8 0.79584 0.80301 0.84177 0.83984 0.8190
0.9 0.90577 0.91018 0.92848 0.92824 0.9325
Pi 0.02620 0.02520 0.02140 0.02140 0.0214
0.0 0.01588 0.01448 0.03489 0.02796 0.0084

20 0.1 0.06019 0.06440 0.10746 0.10287 0.0787
0.2 0.18754 0.19516 0.27790 0.26839 0.2372
0.3 0.36854 0.37822 0.47959 0.46829 0.4278
0.4 0.56755 0.57417 0.66784 0.65805 0.6121
0.5 0.73678 0.74463 0.81370 0.80708 0.7668
0.6 0.86270 0.-5802 0.90931 0.90579 0.8803
0.7 0.93964 0.94263 0.96245 0.96102 0.9515
0.8 0.97839 0.97974 0.98712 0.98672 0.9869
0.9 0.99400 0.99449 0.99651 0.99646 0.9983
Pi 0.00069 0.00054 0.00046 0.00046 0.0005
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Table 6.2 Moments of HN,6 (x) and of H* (z) for'

R=I., u=.4, w=.6, s'=-1, s" =, A =10,20, b=.4.

6=0 6=1

n N = 40 N = 50 N = 40 N = 50 H*(x)
A = 10 1 0.5933 0.5933 0.5488 0.5574 0.5933

2 0.3951 0.3950 0.3477 0.3565 0.3949
3 0.2843 0.2842 0.2416 0.2493 0.2840
4 0.2167 0.2165 0.1794 0.1860 0.2158
5 0.1726 0.1725 0.1402 0.1458 0.1710
6 0.1425 0.1423 0.1140 0.1188 0.1400
7 0.1209 0.1207 0.0957 0.0999 0.1177
8 0.1051 0.1048 0.0825 0.0861 0.1011
9 0.0930 0.0928 0.0726 0.0758 0.0884

10 0.0837 0.0834 0.0650 0.0679 0.0785
1 0.3556 0.3556 0.3043 0.3139 0.3556

=20 2 0.1031 0.1630 0.1278 0.1340 0.1629
3 0.0868 0.0867 0.0638 0.0677 0.0865
4 0.0513 0.0512 0.0360 0.0385 0.0508
5 0.0329 0.0329 0.0222 0.0239 0.0321
6 0.0225 0.0225 0.0148 0.0160 0.0215
7 0.0162 0.0162 0.0104 0.0113 0.0151
8 0.0122 0.0122 0.0077 0.0084 0.0109
9 0.0095 0.0095 0.0059 0.0064 0.0082

1 10 0.0077 0.0076 0.0047 0.0051 0.0063
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We conclude this section with a numerical example of the conditional distribution of the

remaining shadow length, given that v subsegments to the left of the ith subsegment are

in shadow. In Tables 6.3 and 6.4 we present the conditional p.d.f. (4.10), for the case of a

trapezoidal region, with R = 1, u = .4, w .6, s' s" 1, b = .2 and A = 25,50.

The interval [s',."] is partitioned into N = 20 subintervals. Table 6.3 presents these

distributions for 8 = 0 and Table 6.4 for 6 = 1. For the sake of space saving, we present

these conditional PDF's for i = 10; j = 1,2,...,11 and v = 0,1,2 and 3 only. Since

N = 20, j = 11 corresponds to the case that all the 10 subsegments to the right of J10

are shadowed. We see that when 6 = 0, the modes of all the conditional distributions are

at j = 1; which means that it is most likely that the eleventh subsegment, J11 , is in the

light. This is not necessarily the case when 6 = 1.

.2
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Table 6.3 Values of the Conditional P.D.F. g(j; i, v), for

i = 10, in a discrete approximation, with N = 20, 6 = 0.

, v j g 1_ g v j g v g I
25 0 1 0.3296 1 1 0.4649 2 1 0.4817 3 1 0.4573

2 0.3065 2 0.2507 2 0.2323 2 0.2479
3 0.1634 3 0.1221 3 0.1251 3 0.1287
4 0.0808 4 0.0667 4 0.0660 4 0.0680
5 0.0456 5 0.0363 5 0.0360 5 0.0372
6 0.0258 6 0.0206 6 0.0205 6 0.0211
7 0.0152 7 0.0122 7 0.0121 7 0.0125
8 0.0094 8 0.0075 8 0.0075 8 0.0078
9 0.0061 9 0.0048 9 0.0048 9 0.0050

10 0.0040 10 0.0032 10 0.0032 10 0.0033
11 0.0136 11 0.0109 11 0.0108 11 0.0112

50 0 1 0.2208 1 1 0.2836 2 1 0.2919 3 1 0.2845

2 0.2146 2 0.2016 2 0.1949 2 0.1982
3 0.1490 3 0.1329 3 0.1333 3 0.1343
4 0.0979 4 0.0906 4 0.0900 4 0.0907
5 0.0673 5 0.0617 5 0.0613 5 0.0619
6 0.0466 6 0.0427 6 0.0425 6 0.0429
7 0.0329 7 0.0302 7 0.0300 7 0.0303
8 0.0238 8 0.0218 8 0.0217 8 0.0219
9 0.0175 9 0.0161 9 0.0150 9 0.0161

10 0.0132 10 0.0121 10 0.0120 10 0.0121
11 0.1164 11 0.1068 11 0.1062 11 0.1071
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Table 6.4. Values of The Conditional P.D.F. gN,6(j"; i, v), for

i = 10, in a discrete approximation, with N = 20, 6 = I.

, J 9 j 9 ,g g

25 0 1 0.1136 1 1 0.2161 2 1 0.2817 3 1 0.2741
2 0.1885 2 0.2183 2 0.1904 2 0.1839
3 0.1868 3 0.1434 3 0.1287 3 0.1352
4 0.1230 4 0.0972 4 0.0941 4 0.0959
5 0.0831 5 0.0714 5 0.0670 5 0.0681
6 0.0617 6 0.0514 6 0.0481 6 0.0491
7 0.0452 7 0.0374 7 0.0352 7 0.0359
8 0.0334 8 0.0278 8 0.0261 8 0.0266
9 0.0252 9 0.0210 9 0.0197 9 0.0201

10 0.0193 1, 0.0161 10 0.0151 10 0.0154
11 0.1200 11 0.0998 11 0.0938 11 0.0957
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Appendix A. Visibility Probabilities For Poisson Fields.

We present here the basic methodology of determining visibility probabilities, under

Poisson shadowing processes, leading to general formulae of + (n) and (n, m). For more

details and discussion see Yadin and Zacks [2], [3], [4].

We assume that a countable number of disks are randomly dispersed in a region in the

plane according to a Poisson random field model. More specifically, let (0, p) be the polar

coordinates of the location of a center of a disk, with respect to an origin 0, and let r be

the radius of a disk. Let

(A.1) S = {(0,p,r) (0, p,r) E S},

be the sample space of possible disks, and let T be the Borel c-field of subsets of S. Let

T E T and N{T} be the number of disks having coordinates in T. The Poisson field

model assumes that, for any t > 1 and any partition {T1 ,.. .,Tt} of S, N{T 1},..., N{Tt}

are independent random variables, having Poisson distributions with means

(A.2) i/{T1 } = A///h(O,p)dF(r IO,p)dOdp, i=

where 0 < A < oo is the intensity of the field; F(r 1 Op) a conditional c.d.f. of r, given

(0, p) and h(O, p) is a bivariate density function on (-r, 7r] x (0, oo).

Let P = (s,p) be a point in the plane, and let R(s) be a ray from 0, passing through

P. Let U_(s) [resp. U+(s)] be all points in S, on the left [resp. right] of R(s), which

intersect R(s), i.e., if d(O,p;R(s)) denotes the distance between P = (O,p) and R(s) then,

(A.3) U-_(s) = {(0, p,r) (0,p,r) E S, 0 < s, and d(0,p;R(s)) < r}.

Similarly,

(A.4) U+(s) = {(0, p,r) (0, p,r) E S, 0 > s, and d(0,p;R(s)) < r}.
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Let AM+(s) [resp. AM_(s)] be the expected member of disk on the right [resp. left] of

R(s) which intersect it, i.e.,

(A.5) M±(s) = JJ[h(Op)dF(r 10, p)]dOdp.

U* (a)

The probability that R(s) is not intersected by disks on its left [resp. right] is _(s) [resp.

C+(s), where

(A.6) (s)= exp{- M±(s)}.

The visibility probability of P =(s'p) is =(s) =

If C is a segment of a curve in the plane, and P, = (s,,, p,), n 1,..., N,are "mid-

points" in a partition of C into N subsegments, then, in the notation of the previous

sections ±(n) = (s), n = 1,...,N.

Let P 1 = (si,pi) and P 2 = (s2,p2) are two distinct points and R(si), i = 1,2 are the

corresponding rays from the 0 through the points. Let U(s1 , S2) be the set of all possible

disks in S, between R(sl) and R(s 2) which intersect either R(s 1 ) or R(S2), i.e.,

(A.7) U(si,s 2) = {(O, p,r) (0, p,r) E S and d(O,p;R(sl)) < r or d(O,p;R(s 2)) < r}.

The expected number of disks between R(s 1 ) and R(s 2) which intersect either one of these

rays is AM(S1, S2), where

(A.8) M(S1,s2) = ) ff h(O,p)dF(r 0, p)ddp.

U(81'8h2)

Finally, the probability that neither R(s 1 ) nor R(s 2) are intersected by disks centered

between them is (si,s2) = exp{-AM(si,s 2 )}. The value of the function C(ni,n 2 ) for

points P, and P 2 on C is given by C(n1,n 2 ) =(slS2)
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